Зачем нужен эхолот на рыбалке?
О том, что такое эхолот слышал каждый. Но далеко не все рыбаки знают, для чего он нужен. А большое количество различных мифов и противоречий окончательно сбивают с толку. Хотите узнать, зачем нужен эхолот на рыбалке? В таком случае читайте дальше!
Что такое эхолот
Принцип работы устройства основан на акустических эхо-сигналах, которые прибор направляет в толщу воды, затем прибор измеряет временной интервал между поданным звуковым сигналом и его возвратом, отраженным от дна водоема. Аппарат вычисляет расстояние до дна, а также показывает его рельеф. Но при чем же тут рыбы? А вот при чем. Дело в том, что эхо сигнал отражается не только от поверхности дна, но и от любого другого предмета, плотность которого отличается от плотности воды. То есть эхолот способен засечь рыбу и отобразить её на дисплее.
Как пользоваться эхолотом?
Ключевым фактором для стабильной и надежной работы устройства служит точный выбор чувствительности и диапазон глубин. Идентификация рыбы производится с помощью метки на экране. Чем больше обнаруженный объект, тем крупнее будет метка. Однако чувствительность прибора крайне важна, ведь если неправильно настроить эхолот, окунь весом в полкило может «преобразиться» в сига с весом в 3 кг. И наоборот, слишком сильно снизив порог чувствительности, можно получить на экране результат, где рыба в 5 кг будет выглядеть 300-граммовой.
Основные правила эффективного использования эхолота
-
Настройка диапазона просматриваемых глубин должна проводиться вручную;
-
Настройка чувствительности проводиться непосредственно на месте ловли – необходимо вращать регулятор пока случайные точки не станут стабильными;
-
Следует выбирать качественное оборудование, производство которого ведется известными компаниями.
Почему рыбалка с эхолотом так эффективна
Изначально это оборудование было создано для работы профессионального применения. Оно позволило значительно повысить безопасность мореплавания — благодаря ему корабли могут обходить рифы и мелководные участки океанов и морей. Также похожие устройства стали применяться и в военных целях для поиска подводных лодок и других объектов в толще воды. Значительно позже появились рыболовные эхолоты для массового использования, с помощью которых все любители рыбалки могут качественно улучшить результат
Стоит ли купить эхолот? Однозначно да, если у вас есть лодка или вы любите порыбачить зимой. Для тех, кто закидывает удочку с берега смысла в покупке нет, а вот если вы предпочитаете рыбалку с лодки или судна, то для вас такое приобретение откроем массу новых возможностей:
-
Отражение рельефа дня.
Если вы охотитесь на хищную рыбу – щук, сомов, судака, то место возможной дислокации рыбы крайне важно. На экране эхолота вы сможете увидеть всю особенность структуры дна и определить, где стоит рыба; -
Точность в измерении глубины.
Для ловли на спиннинг, а также для охоты на определенный вид рыб глубина играет ключевую роль. Так, зная расстояние до дна, вы сможете сориентироваться с правильным выбором наживки, найти ямы, где обычно стоит крупная рыба, а также сократить время на поиски; -
Вспомогательные функции.
Современные эхолоты обладают рядом дополнительных функций. Большинство устройств имеет встроенный датчик атмосферного давления и температуры. Эти факторы также играют важную роль и влияют на поведение рыб; -
Отображение размера рыбы.
Самые современные варианты оборудования отражают не только дно и рельеф, но и размер рыбы! На сенсорном экране таких устройств она отображается метками в соответствии с размером – обычно мелкая обозначается 1-пиксельной меткой, крупная 2-3 пиксельными метками.
От чего зависит цена на рыболовный эхолот?
Функциональные особенности оборудования зависят от цены на устройство. Так, самые простые и доступные модели оснащены лучом с углом обзора в 9-24 градусов. Их устройство предельно простое, а дополнительных функций нет. Это оптимальный вариант для изучения дна, однако «увидеть» рыбу с их помощью довольно сложно.
Профессиональные эхолоты – функциональное трехмерное оборудование. С их помощью информативность изображения получается очень высокая – конфигурация рельефа, точная дислокация рыбы, е` размер. Кроме этого, профессиональные модели оснащены дополнительными функциями, которые позволяют точно устанавливать удаленность объекта, температуру, давление.
«Золотой серединой» для рыбаков служат эхолоты среднего ценового сегмента. Угол обзора зондирующих лучей у таких эхолотов 45-90 градусов. Есть возможность использовать дополнительные датчики. Они хорошо подходят для исследования дна и поиска рыбы.
Где можно купить рыболовный эхолот?
В крупном интернет-магазине КотоФото (kotofoto.ru) собраны самые разнообразные варианты оборудования для рыбалки. Модели рыболовных эхолотов представлены широким ассортиментом. Вы сможете найти варианты как для морской рыбалки, так и более простое оборудование для речной рыбной ловли с лодки.
Эхолоты — как это работает
Люди ловят рыбу тысячу лет. Каждый рыбак сталкивается с двумя проблемами — с поиском рыбы и ее поимкой. Хотя гидролокатор (эхолот) не может вываживать рыбу, он может решить проблему поиска рыбы. Вы не сможете поймать рыбу, если ловите в месте, где ее нет, эхолот спасет Вас от этого.
В конце 1950-ых, Карл Лоуранс и его сыновья Арлен и Даррел начали подводное плавание, чтобы наблюдать рыбу и ее привычки. Это исследование, заказанное местным и федеральным правительствами США, нашло, что приблизительно 90 процентов рыбы сконцентрировано в 10 процентах воды озер. С изменением условий окружающей среды рыба перемещается в более благоприятные области. Их исследования показали, на большинство видов рыб воздействует подводная структура (это: деревья, водоросли, камни и отложения), температура, течение, освещенность и ветер. Эти и другие факторы также влияют на местоположение корма (планктона, малька, водорослей). Вместе эти факторы создают условия, которые вызывают частые перемещения популяции рыбы.
Как работает эхолот
Слово сонар (эхолот) это сокращение трех английских слов: Звук, Передвижение, Расположение. Сонар был разработан во время Второй Мировой Войны для отслеживания подводных лодок. Эхолот состоит из передатчика, преобразователя, приемника и дисплея.
Наиболее часто используемая частота волны составляет 192 кГц, также иногда производятся приборы на частоте 50 кГц. Хотя эти частоты находятся в диапазоне звуковых частот, они неслышимы ни людям, ни рыбе. (Вы не должны волноваться относительно звукового модуля, пугающего рыбу — они не могут слышать это.)
Как упомянуто ранее, эхолот посылает и принимает сигналы, затем "печатает" эхо на дисплей. Так как это случается много раз в секунду, непрерывная линия идущая поперек дисплея, показывая сигнал дна. Кроме того, на экране отображается сигнал, возвращенный от любого объекта в воде между поверхностью и дном. Зная скорость звука через воду (4800 футов в секунду) и время требуется для возращения эха, прибор может показывать глубину и нахождение любой рыбы в воде.
Возможности эхолота
Мощный передатчик
Эффективный преобразователь
Чувствительный приемник
Дисплей высокого разрешения
Все части этой системы должны быть разработаны так, чтобы работать вместе, при любых погодных условиях и критических температурах.
Высокая мощность передатчика увеличивает вероятность, что Вы получите эхо на глубоководье или в плохих водных условиях. Это также позволяет Вам видеть мелкие подробности, типа мальков и мелкой структуры дна.
Преобразователь не должен только проводить мощный сигнал от передатчика, он также должен преобразовать электрический сигнал в звуковую энергию с наименьшей потерей в мощности сигнала. С другой стороны, он должен преобразовать самое малое эхо от малька или сигнал дна с глубоководья.
Приемник имеет дело с чрезвычайно широким диапазоном сигналов. Он должен отличить максимально сильный передаваемый сигнал и слабое эхо, пришедшее от преобразователя. Кроме того, он должен различить объекты находящиеся близко друг к другу, превратив их в разные импульсы для дисплея.
Дисплей должен иметь высокое разрешение (вертикальные пиксели) и хороший контраст, чтобы показывать подводный мир детально и ясно. Это позволяет видеть дуги рыбы и мелкие подробности дна.
Частота волны работы эхолота
Большинство современных эхолотов оперирует на частоте 192 кГц, некоторые используют 50 кГц. Есть свои преимущества у каждой частоты, но почти для всех состояний пресной воды и большинства состояний соленой воды, 192 кГц — лучший выбор. Эта частота дает лучшие подробности, работает лучше всего в неглубокой воде и на скорости, и обычно дает меньшее количество "шумовых" и нежелательных отражений. Определение близлежащих подводных объектов, также лучше на частоте 192 кГц. Это способность отобразить две рыбы как два отдельных эха вместо одной "капли" на экране.
Существуют некоторые условия, при которых частота 50 кГц лучше. Как правило, эхолоты, работающие на частоте 50 кГц (при тех же самых условиях и мощности) может проникать более глубоко через воду. Это происходит из-за естественной способности воды поглощать звуковые волны. Скорость поглощения больше для более высоких частот звука, чем для более низких частот. Поэтому 50 кГц эхолоты находят использование в более глубокой соленой воде. Также, преобразователи 50 кГц эхолотов имеют более широкие углы обзора, чем преобразователи 192 кГц эхолотов.
Резюме: различия между 192 кГц и 50 кГц:
192 kHz | 50 kHz |
Малые глубины | Большие глубины |
Узкий конический угол | Широкий конический угол |
Лучшее определение и разделение целей | Худшее определение и разделение целей |
Меньшая чувствительность к помехам | Большая чувствительность к помехам |
Преобразователи эхолота
Преобразователь это "антенна" эхолота. Он преобразовывает электрическую энергию от передатчика в звуковую волну высокой частоты. Звуковая волна от преобразователя путешествует через воду и назад, отразившись от любого объекта в воде. Когда отраженный сигнал попадает назад в преобразователь, он преобразовывает звук в электрическую энергию, которая посылается приемнику эхолота. Частота преобразователя должна соответствовать частоте звукового приемника эхолота. Другими словами, Вы не можете использовать преобразователь 50 кГц на звуковом приемнике предназначенном для 192 кГц. Преобразователь должен быть способен проводить мощные импульсы передатчика, преобразовывая электрические импульсы в звуковые с минимальными потерями мощности. В то же самое время он должен быть достаточно чувствительным, чтобы принять самые слабые из отраженных сигналов. Все это относится к определенной установленной частоте и при этом преобразователь должен игнорировать эхо приходящих на других частотах. Другими словами, преобразователь должен быть очень эффективен.
Кристалл
Активный элемент преобразователя — искусственный кристалл (цирконат свинца или титанат бария), компоненты смешиваются, а затем формуются. Эта форма помещается в печь, в которой превращается из смеси химикатов в прочный кристалл. Как только кристалл охладится, к двум сторонам кристалла прикрепляются провода. Провода прочно спаяны с поверхностью кристалла, так что кристалл может быть подключен к кабелю преобразователя. Форма кристалла определяет частоту его работы и конический угол. Для круглых кристаллов, используемый большинством эхолотов, толщина определяет его частоту, а диаметр определяет угол конуса или угол зоны обзора. Например, в 192 кГц эхолоте, с коническим углом 20 градусов размеры кристалла приблизительно один дюйм в диаметре, при этом восьми градусный эхолот требует кристалла, диаметр которого несколько дюймов. Итог: больший диаметр кристалла — меньший конический угол. Это причина, почему преобразователь с конусным углом 20 градусов намного меньший, чем преобразователь с конусным углом в 8 градусов, при использовании одинаковой частоты.
Размещение эхолота на лодке
Преобразователи производятся различных форм и размеров. Большинство преобразователей сделано из пластмассы, но некоторые преобразователи "через корпус " сделаны из бронзы. Как показано в предыдущей части, частотный и конический угол определяют размер кристалла. Поэтому размещение преобразователя определяется размером кристалла внутри.
Имеются четыре главных стиля размещения используемых сегодня. "Через Корпус", "Стреляет Через Корпус ", переносной, крепление к транцу.
Скорость и преобразователь
Кавитация— главное препятствие для высокоскоростных измерений. Если поток воды вокруг преобразователя гладок (ламинарный), то преобразователь посылает и принимает сигналы нормально. Однако если поток воды прерван грубой поверхностью или острыми гранями, то водный поток становится турбулентным, настолько что воздух отделяется от воды в форме пузырьков. Это называется "кавитацией". Если эти воздушные пузырьки проходят через корпус преобразователя (ту часть, в котором закреплен кристалл), то на дисплее эхолота виден "шум". Преобразователь разработан для работы в воде, а не в воздухе. Если воздушные пузырьки проходят через корпус преобразователя, то сигнал от преобразователя отражается от воздушных пузырьков обратно. Так как воздушные пузырьки близки к преобразователю, эти отражения очень сильны. Они будут накладываться на отражения дна, структуры водоема и сигналы рыбы, делая их трудноразличимыми или вообще незаметными.
Решение этой проблемы состоит в том, чтобы делать преобразователь позволяющий воде течь мимо без создания турбулентности. Однако это сделать трудно из-за многих компонентов помещенных в современный преобразователь. Он должен быть маленьким, так, чтобы не сталкиваться с навесным мотором и его водным потоком. Преобразователь должен просто устанавливаться на транце так, чтобы просверливать минимум отверстий. Он должен подниматься без проблем при столкновении с подводными объектами. Фирма Lowrance запатентовала HS-WS преобразователь — самая передовая разработка в области высокоскоростных преобразователей. Эта технология объединяет высокоскоростные измерения с простым крепежом и безопасным подъемом при столкновении с посторонним объектом на высокой скорости.
Проблема кавитации не ограничена формой и размещением преобразователя. Многие корпуса лодок создают воздушные пузырьки, которые проходят через корпус преобразователя. У многих алюминиевых лодок эта проблема появляется из-за сотен головок заклепок, которые высовываются в воду. От каждой заклепки течет струйка воздушных пузырьков, когда лодка движется, особенно на высокой скорости. Чтобы ликвидировать эту проблему нужно устанавливать корпус преобразователя ниже воздушных пузырьков, струящихся от оболочки. Это обычно означает, что Вы должны установить крепежную скобу как можно ниже на транце.
Конический угол преобразователя эхолота
20 градусный конический угол 8 градусный конический угол
Преобразователь концентрирует звук в луч. Когда импульс звука исходит от преобразователя, он охватывает тем более широкую область, чем глубже он проходит. Если бы Вы нарисовали график движения сигнала, вы бы увидели, что он представляет собой конус, называемый "конический угол". Мощность звука наибольшая на оси конуса и постепенно уменьшается к краям.
Чтобы измерить конический угол преобразователя, сначала мощность измеряется в центре или на оси конуса, а затем измеряется на удалении от центра. Когда достигается точка половины мощности от максимальной (или -3db в электронных терминах), угол от средней оси измерен. Полный угол от точки -3db на одной стороне оси и точки -3db с другой стороны оси называется коническим углом.
Эта точка половины мощности (-3db) стандарт для электронной…