Скорость снежной лавины. Снежные лавины: как образуются, почему происходят и защита от них

, а0, а1 и а2 меняются в процессе движения лавины, аналитическое решение уравнения (11.3) отсутствует. В связи с этим уравнение следует упростить. Например, если допустить, что лавина с постоянной массой движется вниз по склону с постоянным уклоном, коэффициент кинетического трения остается неизменным, а силы, препятствующие движению, незначительны, то конечная скорость лавины будет описываться формулой

      Уравнение (11.4) может быть записано в более удобной форме, применяемой при моделировании потока жидкости в открытом канале:

где ¿ — коэффициент турбулентного трения, учитывающий влияние всех сил, препятствующих движению и пропорциональных V; R — гидравлический радиус, равный толщине снега, движущегося по открытым склонам. Когда коэффициент µ незначителен (при высоких скоростях лавин), уравнение (11.5) принимает вид

       Уравнение (11.6) сходно с уравнением Шези для жидкого потока в канале, где

     Скорости, рассчитанные по уравнению (11.6) с использованием табличных значений С (для получения ¿ ) из гидравлических справочников, хорошо согласуются со скоростями, наблюдавшимися в сухих и мокрых лавинах. Рекомендуемые значения ¿  для различных типов местности приведены в табл. 11.2.


Таблица 11.2 Значения коэффициента турбулентного трения ~ Особенности местности g м/сз Гладкий твердый снежный покров на склоне с постоянным уклоном без деревьев и скал Открытый горный склон без деревьев Открытый горный склон, скалы, заросли Ложбина средней величины Шероховатая поверхность с валунами и ветро- выми ложбина лн Лес 1200 — 1600 750 500 400 — 600 300 150


      Влияние разных факторов на µ  известно плохо, но его значение уменьшается с увеличением скорости и зависит от типа снежного покрова. Влияние кинетического трения на лавины при скорости более 50 м/с можно не учитывать. Значение п, при скорости лавины 30 — 50 м/с изменяется от 0,1 до 0,15, а при скорости 30 м/с — от 0,2 до 0,3.
      Определение толщины снежного потока и гидравлического радиуса требует опыта. При этом следует учитывать толщину разламывающейся снежной доски, площадь поверхности зоны зарождения лавины и поперечный профиль ее траектории.
      Для расчета скорости пылевой лавины надежного метода пока не разработано. Предлагаемые для этой цели уравнения не подтверждены достаточным количеством данных наблюдений.

Читайте также:  Перелом ребра скорая помощь. Первая помощь при переломе ребер

Содержание

Ударные нагрузки

Пылевые лавины

      Удар пылевой или сухой лавины по препятствию, ориентированному перпендикулярно потоку, можно сравнить со столкновением струи воды с твердой поверхностью. Таким образом, давление Рр на единицу площади поверхности препятствия может быть выражено следующей зависимостью:

где C — коэффициент торможения, значение которого зависит от размера и формы препятствия; ра и V — соответственно плотность и скорость лавины. Значения С могут быть найдены в таблицах давления ветра на сооружения, которые имеются в Строительных нормах. Значение С=2, по-видимому, применимо для крупных объектов, таких как стены.

Сухие и мокрые лавины

       Плотный, текущий снег, ударяясь о жесткое препятствие, вначале уплотняется, а затем обтекает его. Первоначальная пластическая деформация есть результат кратковременного возрастания давления до Рi последующего его уменьшения и установления давления Pa

         Начальный пик давления Рi является функцией деформационных свойств, которые в свою очередь зависят от температуры, количества свободной воды и размера снежных зерен. Результаты наблюдений и теоретических исследований позволяют предположить, что Рi в 2 — 3 раза выше Рa , однако данных для детального анализа недостаточно.
        Данные наблюдений показывают, что динамическое давление Р, зависит от типа лавин и изменяется в случае пылевых лавин от 2 до 30 кПа, а в случае сухих и мокрых лавин от 20 до 300 кПа.  
        Встречая препятствие, лавина может сжиматься или отклоняться им, что приводит к нагрузкам в разных направлениях. Возникающее в таких случаях движение вверх имеет особое значение при проектировании зданий, так как при этом возникает давление на софит (ту часть крыши, которая выступает за стены), что может быть причиной обрушения здания. При проектировании большей части зданий этот тип нагрузки не учитывается. Кроме того, если сооружение подвергается удару крупной лавины, состоящей из нескольких волн снега, серия ударов часто вызывает опасные вибрации, которые могут разрушить объект. Наблюдений за изменением ударных нагрузок лавин этого типа во времени нет.
       Лиф и Мартинелли представили значительную информацию по расчетным давлениям, оказываемым лавинами. Следует, однако, подчеркнуть, что точность рассчитанных ударных нагрузок сильно зависит от оценок скорости и плотности движущегося снега.

Читайте также:  Схема завязывания крючка на леску. Как привязать крючок к леске?

Дальность выброса

        В зоне отложения, где уклон невелик, движение лавины замедляется и она останавливается. Однако лавина может продвигаться на значительное расстояние и по дну долины или даже «прыгать» на противоположный склон. Уравнение, обычно используемое для оценки дальности выброса D, имеет вид

где ф — крутизна склона в зоне отложения; µ, ¿ — коэффициенты трения, определяемые из уравнения (11.5) и характеризующие особенности поверхности в зоне выноса (вследствие того что средняя скорость лавины в зоне отложения мала, значения µ составляют 0,25 — 0,3); hm — средняя толщина лавины в зоне отложения.
      Одна из главных проблем, связанных с применением уравнения (11.9), заключается в недостатке данных о коэффициентах трения. Другая проблема — определение начала зоны отложения и точки, от которой следует измерять D. Это особенно трудно там, где имеют место плавные перегибы склона. Поэтому для практической оценки дальности выброса требуется большой опыт.

Далее: О классификации лавин —->
Оглавление